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A b t m d .  A class o f  quantum many-body models of arbitrary dimension and arbitrary 
statistics of particles, for which exact eigenstates may be obtained, is found. I t  is assumed 
that: ( i l  models contain two (or 2mJ kinds of particles with 'symmetric' matrix elements 
of pairwise interaction (all potentials coincide with each other to within a sign and 
wavefunetions of free particles of two components coincide to within a phase factor; 
pairwise interactions are otherwise arbitrary); ( i iJ  there exists the degeneracy of (the sum) 
of free-particle spectra. Exact many-body eigenrtates correspond to a condensation of 
non-interacting composite panicles ('excitons') which are not exactly bosons, into a single 
quantum state, and te excitations over the condensate. The origin of the possibility ofexact 
solution is the symmetry under the continuous rotations in the isospin space of two 
components, t o  which Bagolubov canonical transformations with parameters U, v indepen- 
dent of momentum correspond. The class of such models comprises, in particular. two- 
dimensional electron-hole systems in a strong magnetic field. 

1. Introduction 

There are a few known quantum many-body models which are exactly solvable. Most 
of these models are either one dimensional (Mattis and Lieb 1965, Lieb and Mattis 
1966) or consider a situation with short-range pairwise interactions (Wada et 4l 1958, 
Anderson 1958; see also Thouless 1972, Gaudin 1983 and references therein). We 
intend to demonstrate that there exists a class of models of arbitrary dimension which 
allows one to find some exact many-body eigenstates for potentials of interaction of 
quite an arbitrary form, including long-range potentials. 

The essential features of these models are (i) the presence in the system of two (or 
2m) kind of particles with 'symmetric' matrix elements of interaction, and (ii) the 
degeneracy of free-particle spectra (more precisely, the sum of the spectra is to be 
made degenerate). 

Such models describe, e.g., ZD electrons (e) and holes (h) in magnetic field H, 
which is strong enough so that virtual transitions of particles between different Landau 
levels are negligible. This strong magnetic field approximation is valid when Eo<< w c ,  
where Eo is the interaction energy per particle (for pure Coulomb interactions Eooc 
e 2 / K r , o c H 1 / ' ,  r,, = ( c / e H ) " '  is the magnetic length), wc= e H / m c x  H is the energy 
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separation between adjacent Landau levels; we set f i  = 1. In this situation particles are 
confined to their uppermost (in the simplest case-zero) partially occupied macroscopi- 
cally degenerated Landau levels. 

Many-body effects in the ground state of this system have been analysed by means 
of temperature diagram technique (with successive exploration of the limit T + O )  by 
Lerner and Lozovik (1981, 1982). It should be noted that usual perturbative methods 
at T=O are inapplicable because of the infinite degeneracy of the non-interacting 
ground state. 

It has been shown diagrammatically that the ground state energy of a 2~ e - h  system 
in a strong magnetic field can be obtained exactly. It turned out to be equal to the 
additive sum of the binding energies of 2~ magnetoexcitons of zero momentum. Direct 
quantum mechanical consideration provided the ground-state wavefunction, which 
does have the form of the condensate of ZD magnetoexcitons; the property of the 
ground state as an ideal gas of excitons has been reaffirmed by non-perturbative means 
and some excited states of the systemhave been found (Dzyubenko and Lozovik 
1983a, b). The wavefunction of the ground state has also been considered by Bychkov 
et a/  (1983); in that work, however, connection to the condensation of excitons has 
not been demonstrated explicitly. 

Other closely related exactly solvable models have also been found: the ZD layered 
(multicomponent) e-h  system in strong field H, which describes a set of spatially 
separated quantum wells, each containing 2~ electrons and holes; the 2~ e - h  system 
in crossed electric and strong magnetic fields (Dzyubenko and Lozovik 1984, 1986). 

The interesting aspect of the situation in crossed fields is the possibility of non- 
dissipative energy transport by excitons in the non-equilibrium system. This effect may 
be considered as the analogue of the quantum Hall effect (for a review see, e.g., Prange 
and Girvin 1987) for the case of a neutral 2~ two-component system (Dzyubenko and 
Lozovik 1984). Very close consideration was later given by Paquet et al (1985); see 
also Rice et a/  (1985). 

2~ electron systems with equivalent groups of carriers in strong magnetic fields 
turn out to have the same symmetry. The excitations of the ‘excitonic’ kind in this case 
are ‘valley-waves’ in ZD multivalley semiconductors in strong fields H (Rasolt et a/  
1986), and, when the spin of electrons is taken into account, are k = O  spin-wave 
excitations in which electrons are excited to a higher Landau level with the same 
number but the opposite direction of spin (the dispersion relations for such excitations 
have been considered by Bychkov e f  al 1981 and Kallin and Halperin 1984). 

The aim of this paper is to point out the essential features of the class of such 
exactly solvable many-body models. In section 2 we derive a many-body Hamiltonian 
with the emphasis on the formal requirements on wavefunctions and interaction 
potentials. In section 3 we present a very simple consideration based on the operator 
algebra for quantum equations of motion. In section 4 the general consideration is 
illustrated by the example of a ZD e-h system in a strong magnetic field. Section 5 is 
devoted to the detailed analysis of the exact continuous symmetry of Hamiltonians 
and, finally, in section 6 we study the arbitrary statistics of particles. 
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2. Hamiltonians 

We consider a many-body system consisting of two kinds of particles. The Hamiltonian 
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of free particles has the form 

where the index i = 1 , 2  distinguishes between the two kinds of particles and the fermion 
operator a:,, creates the particle of the kind i in the state with (quasi)continuous 
quantum number p.  It may be considered as a d-component (quasi)momentum ( d  
does not necessarily coincide with the dimensionality of real space D ) ;  p may take 
No different values (for 2~ electrons and holes in a strong magnetic field, No = L2/27rr: 
is the macroscopic degeneracy of Landau levels, L2 is the area of the system). 

We consider the case when the dispersion relations of the components satisfy the 
condition 

E I ( P ) +  E z ( - P )  = Eo (2) 

where E~ is a constant independent of p (for a semiconductor E" is the gap energy). 

2). When the electron description is used, it corresponds to 
Note, that we use the hole description of one kind of particle (say, with the number 

t 
E 2 ( P )  + - E k P )  a 2 n +  a2.-D 

u I 2 ( r ) +  -U&) &,(I)+ 6 L J r )  

H .  I", =I 2 1 Z UJP,  1 p2; p ;  9 P~)4 ,4pPjp ;a , ," : .  (3)  

u y ( P , , P 2 ; P ; , P ; ) =  q i ( P 2 . P I ;  P L P i )  (4) 

u , , ~ P l , P z ; P ; . P ; ~ = - u l z ~ P l , - P ~ ~ P ; ,  - p 2 )  

and (see below) 

The Hamiltonian of interaction is given by 

i,.i=1.2 P ,  ,..., P: 

Interaction matrix elements must have the following properties: 

v ~ P l , P : , P ; ~ = v ~ P , - P ; , P , - P : ~ .  (7) 

To clarify the conditions (4)-(7), we shall make use of the representation in real space. 
Let cpj,,(r) he the wavefunctions of particles in the states corresponding to aJD, interacting 
via potentials U , ( r )  (we set U,2(r)= U2,(r ) ) ,  and interaction matrix elements are 
usually defined as 

, 
UJP, .p2; p :  ,P;)  = J dr ,  dr, 6 ~ , ( r , ) 6 ~ ~ ( r 2 ) u ~ ( r ~ - r 2 ) ~ j ~ ~ ( r ~ ) 6 ~ ~ ~ ( r , ) .  (8) 

Then (4) follows from Uji(r)= U,,(-*), which is the general property of pairwise 
potentials, and ( 5 )  follows from 

Ull(r)  = U22(r) = - U d r )  = U(r)  (9) 

6T,,(r)61,,(r) = 62,- , , ( r )6~,- ,~(r)  (10) 

i.e. interactions between particles of the same kind coincide with each other and (with 
the reversed sign) with that of different kinds; besides, the wavefunctions of particles 
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of the two kinds in the electron representation (see above) coincide with each other 
(to within a phase factor). Equations ( 6 )  and (7) mean that momentum is conserved 
and that the matrix element V(p,,p;,p;) depends only on the differences of its 
arguments. 

It is worth noting here that the above requirements on interactions in many-body 
system are not the exotic ones. In fact, conditions (9) and (10) are fulfilled for, e.g., 
neutral Coulomb systems with particles (with charges of different signs) which are 
described by the plane waves. Also, when +;;(r) are plane waves, ~ ( p ,  -9; p :  -9;) 
is, as usual, the Fourier transform of the interaction potential f i ( p , - p ; ) ,  

A B Dzyubenko and Yu E Lozouik 

3. Quantum equation of motion: finite algebra of operators 

When conditions (21, (4)-(7) are satisfied, the Hamiltonian of the system fi = H,+ Hi,,, 
allows one to find some exact many-body eigenstates. To demonstrate this, let us 
introduce the creation operator of the composite particle (‘exciton’) 

with zero momentum of the centre of mass p I + p 2 = 0 .  As we shall see below, QA 
describes the pair of particles the most tightly bound in r space (yet compatible with 
the uncertainty principle). 

The exact quantum equation of motion for QA quite unexpectedly has the form of 
the finite algebra of operators: 

where 

P 

and E ~ ;  u ( p . p ’ )  are defined by (2) and (7); respectively (for a straightforward, but 
rather tedious, derivation see the appendix). 

From equation (12) it follows at once that 

f i i ( Q A ) N I O )  = N&(QAINl0) (14) 

where 10) denotes the vacuum state. Hence the state with the condensate of composite 
particles (QA)NIO) is the exact eigenstate of the many-body Hamiltonian. 

The question as to whether this state is the ground state of the many-body system, 
in the absence of general theorems, may only be solved by exploring a concrete physical 
situation. For application to the ZD electron-hole system in a strong magnetic field see 
Lerner and Lozovik (1981); see also Paquet er al (1985) and references therein. 

From (12) it also follows that particles QI do correspond to the ideal gas in the 
sense that they do  not interact either with each other or with other particles. Indeed, 
let f’ be the creation operator of a overcondensate excitation consl;sting only of creation 
operators a ; ,  such thatf’l0) is the eigenvector of Hamiltonian H with the eigenvalue 
E,. Then, taking into account the commutation relation [f’, Q;] =0, we have 
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The same holds true for the absence of interaction of particles QA with the external 

(16) 

fields such that 

V , ( r )  = - V 2 ( r )  = V ( r ) .  

Indeed, the interactions with the field V are described by the Hamiltonian 

From (10) and (16) it follows that V , ( p ’ , p ) =  -V,(-p, -p’) and hence (Dzyubenko 
1989, 1990) 

4. ZD electrons and holes on the lowest Landau levels 

In this section we shall illustrate the above consideration by the example of ZD electrons 
and holes in a strong magnetic field. Examples of other related exactly solvable models 
will be given elsewhere. 

In the Landau gauge of the vector potential A = (0, Hx, O), the wavefunctions of 
ZD electrons and holes in their lowest n = 0 Landau levels are given by 

where the one-dimensional momentum p, determines the x coordinate of the centre 
of a cyclotron orbit of electrons and holes X by the relations, respectively X = Tp,r?, . 

Hence the creation operator of a ZD magnetoexciton of zero momentum &(ll)  
describes the most tightly bound e-h pair with zero mean interparticle separation 
(re,,) = 0 (see also Lerner and Lozovik (1980) and references therein). Since the density 
probabilities for electrons and holes are exactly equal (see (lo)), composite particles 
Q: can be regarded as completely neutral objects. This gives some intuitive explanation 
of the ideal character of such particles. 

From (13) and (19) we obtain the binding energy of a 2~ magnetoexciton of zero 
momentum 

where U(,)  is the Fourier transform of interaction potential U ( r )  (9). Forthe Coulomb 
interaction U ( r )  = eZ/w,  equation (20) gives Eo= -(7r/2)’”e2/~r,,. 

From the eigenvalue equation (15) it follows, for example, that the following 
problems turn out to be exactly solvable. 

(i) One excess carrier over the condensate of excitons: 

f’ = a:,, E, = € , ( P I  
which means that the electron (or hole) does not polarize the condensate of excitons, 

(ii) The e-h pair which forms the exciton with ZD magnetic momentum P over 
the condensate: 

1 
f‘= QL=-I exp(iP,p,r2,)a1.,,2+p,a:.P,/2-1., (21) 

~ ( 9 )  exp(iqPrL - q ’ r ~ / 2 )  (22) 

JK P ,  
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hence the spectrum of two-particle excitations can be obtained exactly for this system 
and is exactly determined by the magnetoexciton dispersion relation (22) (Lerner and 
Lozovik 1981, Dzyubenko and Lozovik 1983a, b). 

(iii) Two or three excess carriers with charges of the same sign which, in spite of 
repulsive interaction, form in a strong field H bound states with discrete spectra 
(Bychkov et a /  1981, Laughlin 1983). 

The concluding remark of this section is concerned with equation (18). For 2~ 

migne!oexcitons of zero zomen!cm it izp!ies thi! !he in!erac!io~s with exte:xa! fie!& 
of the form (16) are absent, unless virtual transitions to higher Landau levels are taken 
into account. In the strong magnetic field limit this can be done perturbatively, or-just 
as in the case of the uniform electric field g--by the exact inclusion of the external 
field in the zero order (Dzyubenko and Lozovik 1984). 

The important exception is the situation when the rearrangement of the exciton 

the presence of, e.g., a Coulomb impurity, where the formation of impurity-bound 
states becomes energetically favourable (Dzyubenko 1989, 1990). This effect, obviously, 
cannot be treated perturbatively starting from the delocalized magnetoexciton QA. 

A B Dzyubenko and Yu E Lozovik 

grognlj State in  the external fie!d occurs: This taker place for magne!Qe?ci!ofis in 

5. The symmetry of the Hamiltonian 

The origin of the finite operator algebra (12) lies in the exact isospin symmetry of the 
two components 

t a , , , , e a 2 , - ,  

It was explicitly used for obtaining the ground state of a 2~ e-h  system on the lowest 
Landau levels by Dzyubenko and Lozovik (1983a, b) (compare Rice et a/ 1985). A 
system with equivalent groups of 2~ electrons in a multivalley semiconductor in strong 
field H possesses, as was established by Rasolt et al (1986), the same symmetry. 

The existence of this symmetry can be demonstrated as follows. Consider 
Bogolubov’s canonical transformations, which mix the two components, with real 
transformation parameters U, v independent of quantum number p.  In the case of 
Fermi statistics the transformations have the form (Bogoluhov 1958) 

a l . p +  & = U q p  + va:.-, &,p = vaT,-, (23) 

where u 2 + u 2 = 1 .  As is known, transformations (23) may be presented as a result of 
the rotation in  the isospin space of two components. In the case considered canonical 
transformations (23) are generated by the unitary operator 

(24) 

so that C,” =Sa,$ and U = c o s ( O / a ) ,  U = s i n ( O / a ) .  
I t  should be stressed that in  our case the anti-Hermitian generator of rotations 

i = Q A -  Qo turns out to be directly connected with the creation operator of composite 
particle QA. It is this fact, together with equation (28) below, that points to the possibility 
of exact solution. 

Since transformations (23) do not conserve numbers of particles, it is convenient 
to consider the Hamiltonian 

S = exp[@( 0: - QJ1 

(25) 
- I  

H = H - ~ I ?  & = &, -+ f i 2  = L  a,,,.,,, 
2 P  
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where fit are the particle number operators, p being equal chemical potentials of 
components. 

The Hamiltonian transformed SGS' becomes 

SfiSt= W ( O ) + & , + H , , ,  (26) 

H , =  - w ( E  - 2 p ) ~  ( a : , a : , ~ , + H C ) - [ U 2 ( E - 2 p ) + p 1 f i  (27; 

is the bilinear part of the Hamiltonian, and H,, ,  is the interaction Hamiltonian, which 
exactly conserved its initial form (3). 

It turns out that letting p = p o  = € 1 2 ,  which corresponds to 'Bose' condensation of 
composite particles into the state with the energy 2 p 0 =  E ,  we obtain the Hamiltonian 
fi which is exactly invariant under the rotations 

sfis+ = fi. (28) 
This quite unexpected exact symmetry formally follows from two facts. Firstly, the 
Bogoluhov transformations, with parameters U ,  U independent of momentum, do  not 
generate out of the interaction Hamiltonian of the two-component 'symmetric' system 
(in the sense of (9) and (IO)) non-diagonal terms of the form 

where W =  ( E  - 2 p ) u 2 N O  is the numerical function of 0 (c-number), 

P 

a 1 a 2 a t a 2  t t T t  a:a:ala,  a:a:a:a, 

and their Hermitian conjugates (compare, e.g., Keldysh and Kozlov 1968). Secondly, 
with the condition (2), the only non-diagonal terms in the Hamiltonian (271, namely, 
a;Da;,-p,  are multiplied by a consfant (rather than a function of momentum p ) ,  which 
can be set to zero by the appropriate choice of chemical potential p. 

From (28) it follows th?t the generator L is the integral of motion,i.e. [i, fi] =O.  
Taking into account that H is the Hermitian operator, one obtains [ H, Q:] = 0, thus 

[f?, Q:I=PLp[fi, G I =  (29) 
which strictly coincides with the equation of motion (12). 

From (28) it also follows that 

f?STS'lO) = pLOfiS~IO) (30) 

stlo) = n  ( U  - td,a:,_,)lo) (31) 

is the Bcs-like state (Bardeen et a/ 1957), which does not have definite particle number 
and describes in this case the coherent state of excitons. Hence, for the systems under 
consideration the BCS like sta," (31) is the exact many-body state (the eigenstate of 
the Hamiltonian fi= H - p L o N  with the eigenvalue which isequal to zero). 

Acting on both sides of equation (30) by the operator PN.N,  projecting onto the 
states with N ,  = N2 = N particles, with the use of commutation relations 

[f?, f i N , N ] = [ f i ,  P N , N . N I = O  (32) 
which follow from the fact that both operators f?, 6 conserve particle numbers, we 
obtain 

where 

n 

f?(PN,Ns+)lo? = E N ( ~ N . N s + ) l o )  (33) 
( P N , N ~ ' ) I ~ )  = c o n s t a n t x ( ~ : , ) ~ I ~ ? .  (34) 

Thus the continuous symmetry under the rotations in the isospin space of the 
components actually exists. 



422 

6. Arbitrary statistics of components 

It turns out that the quantum equations of motion (12) are unchanged, as one may 
verify, when the statistics of one (or both) components is changed from Fermi to Bose 
statistics. This may be considered as the additional discrete symmetry of the system 
(Dzyubenko (1986); see also Dzyubenko and Lozovik (1989)). 

Therefore the composite particles Q: correspond to the ideal gas irrespective of 
the statistics of the components. Hence the eigenvalue equation (14) holds (at least, 
formally) for arbitrary statistics. 

A B Dzyubenko and Yu E Lorouik 

It should be noted, however, that 
(i) the possible number of particles N in the state (Q:)NIO) is connected with the 

statistics of the components; 
(ii) it becomes possible to condense into a single quantum state for composite 

particles Q: which are not exactly bosons. The commutation relations for operators 
QA are of the form 

where are the particle number operators and [ , ]+ denotes the anticommutator. 
It follows from the first of equations (37) that composite particles QA with half- 

integer total spin obey, as is well known, the Pauli exclusion principle: possible filling 
numbers for them are N = 0, 1. It should be noted, however, that contrary to a 
widespread opinion, due to the operator term on the right-hand side of (371, QA are 
not, strictly speaking, fermions. 

Composite particles with integer total spin (the cases (35) and (36)) may be 
considered as bosons, as was first pointed out for 3~ excitons by Keldysh and Kozlov 
(1968), only in the limit of small densities N<<< N o .  When both kinds of 'internal' 
particles are fermions (35), in the case when N o -  N<< Nu the right-hand side of 
(35) = -1, and anti-excitons are nearly bosons; it corresponds to the interchange 

In the case ( 3 9 ,  the restriction on the possible number of composite particles Q A  
in the condensate N follows from the Pauli exclusion principle, i.e. N S No.  In the 
case of Bose statistics of components (36), N may obviously be arbitrary. 

The last two statements also follow from the explicit expressions for the state with 
the condensate 

Q A G Q ~ .  

Note that the factors in the square brackets of equations (38) and (39) are due to the 
deviation of statistics of particles QA from pure bose statistics. 

In conclusion, the class of 'symmetric' two-component exactly solvable quantum 
models has been found. Exact many-body states correspond to the condensation of 
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non-interacting two-body composite particles and excitations over the condensate. The 
symmetry between the components implies, actually, that there are no multi-particle 
correlations in the state with the condensate. This can be regarded as the basis for the 
possibility of an exact solution. 

For the two-component models with ciose but not exactly ‘symmetric’ properties, 
our consideration may be useful as a good ‘zero-order’ approximation. Models of such 
a kind are 20 electron-bole systems (in semiconductor quantum wells) and multi- 
componeni ZD eieciron sysiems in a sirong magneiic fieid, where ihe kineiic energy of 
particles is ‘quenched. Other physical realizations, maybe among discrete spin systems, 
are also possible. 
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Appendix 

For the Hamiltonian of free particles Ho ( l ) ,  using equation (2), one easily obtains 

(A.1) 

Consider now the three parts of the interaction Hamiltonian (3),  H,,,-  
Hi::’+ Hi::’+ Hi::’, separately; here, e.g., H!::’ describes the interactions of particles 
of different kinds (i#j in (3)). 

For interactions of particles of the same kinds HjA:) and H/::’, after the redefinition 
of indices of summation p , e p 2  and p i e p ; ,  with the use of equation (4), we obtain, 
respectively, 

1 
[ H ” .  Q’l --E (&,(-P)+E~(P))~: ,~: , - ,  = E ~ Q A .  

(A.2) 

(A.3) 

1 T t [H!::’, GI= -- ~,,(~,,p,;pj,pi)a,,,a:,a,-,:a,,: 

[H!?, Q’I -- - E U2,(p,,p2; ~ l ,p ; )a , , , a~ , ,a , . -~ ia~ , ; .  

JN,,,,... 
1 t t t  

For H!::’ we have 
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Each of the remaining two terms in (A.4) are cancelled exactly by (A.3) and (A.2), 
respectively. Indeed, consider, e.g., the second term in the brackets of (A.4). By the 
following redefinition of the indices of summation: 

PI ’ -Pi P2+PI -Pl’P2 P+Pl (A.7) 

A B Dzyubenko and Yu E Lozovik 

and using (9, we obtain 

From equation (4) it can be easily seen that (A.8) and (A.3) do cancel each other 
exactly. Hence, we have [ent, QA] = E,Q; and, together with (A.l), the equation of 
motion (12). 
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